
ATNF Spectral Analysis Package

User Guide v2.1

DRAFT

Chris Phillips

September 15, 2006

1 Introduction

ASAP is a single dish spectral line processing package currently being developed by the
ATNF. It is intended to process data from all ATNF antennas, and can probably be used
for other antennas if they can produce “Single Dish FITS” format. It is based on the
AIPS++ package.

This userguide has been updated for the ASAP 2.1. Please report any mistakes you find.

2 Installation and Running

Currently there are installations running on Linux machines at

• Epping - use hosts draco or hydra

• Narrabri - use host kaputar

• Parkes - use host bourbon

• Mopra - use host minos

Or use your own Linux desktop.

Note. ASAP2.1 only runs on ATNF Linux machines which have been updated to Debian
Sarge and are using the “DEBIANSarge” /usr/local. If your favourite machine has not been
upgraded, send a request to your friendly IT support. At the time of writing asap 2.1 does
not run on hydra, bourbon or kaputar.

To start asap log onto one of these Linux hosts and enter

> cd /my/data/directory

> asap

This starts ASAP. To quit, you need to type ^-d (control-d) or type %Exit.

1

3 Interface

ASAP is written in C++ and python. The user interface uses the “ipython” interactive
shell, which is a simple interactive interface to python. The user does not need to understand
python to use this, but certain aspects python affect what the user can do. The current
interface is object oriented.

3.1 Integer Indices are 0-relative

Please note, all integer indices in ASAP and iPython are 0-relative.

3.2 Objects

The ASAP interface is based around a number of “objects” which the user deals with.
Objects range from the data which have been read from disk, to tools used for fitting
functions to the data. The following main objects are used :

scantable The data container (actual spectra and header information)
selector Allows the user to select a subsection of the data, such as a specified or

range of beam numbers, IFs, etc.
plotter A tool used to plot the spectral line data
fitter A tool used to fit functions to the spectral data
reader A tool which can be used to read data from disks into a scantable object

(advanced use).

There can be many objects of the same type. Each object is referred to by a variable name
made by the user. The name of this variable is not important and can be set to whatever
the user prefers (i.e. “s” and “ParkesHOH-20052002” are equivalent). However, having a
simple and consistent naming convention will help you a lot.

3.3 Member Functions (functions)

Following the object oriented approach, objects have associated “member functions” which
can either be used to modify the data in some way or change global properties of the
object. In this document member functions will be referred to simply as functions. From
the command line, the user can execute these functions using the syntax:

ASAP>out = object.function(arguments)

Where out is the name of the returned variable (could be a new scantable object, or a
vector of data, or a status return), object is the object variable name (set by the user),
function is the name of the member function and arguments is a list of arguments to the
function. The arguments can be provided either though position or name=. A mix of the
two can be used. E.g.

ASAP>av = scans.average_time(msk,weight=’tsys’)

ASAP>av = scans.average_time(mask=msk,weight=’tsys’)

2

ASAP>av = scans.average_time(msk,tsys)

ASAP>scans.poly_baseline(mask=msk, order=0, insitu=True)

ASAP>scans.poly_baseline(msk,0,True)

ASAP>scans.poly_baseline(mask, insitu=True)

3.4 Global Functions

It does not make sense to implement some functions as member functions, typically functions
which operate on more than one scantable (e.g. time averaging of many scans). These
functions will always be referred to as global functions.

3.5 Interactive environment

ipython has a number of useful interactive features and a few things to be aware of for the
new user.

3.5.1 String completion

Tab completion is enabled for all function names. If you type the first few letters of a
function name, then type <TAB> the function name will be auto completed if it is un-
ambiguous, or a list of possibilities will be given. Auto-completion works for the user object
names as well as function names. It does not work for filenames, nor for function arguments.

Example

ASAP>scans = scantable(’MyData.rpf’)

ASAP>scans.se<TAB>

ASAP>scans.set_in<TAB>

scans.set_cursor scans.set_freqframe scans.set_selection

scans.set_doppler scans.set_instrument scans.set_unit

scans.set_fluxunit scans.set_restfreqs

ASAP>scans.set_instrument()

3.5.2 Leading Spaces

Python uses leading space to mark blocks of code. This means that it you start a command
line with a space, the command generally will fail with an syntax error.

3.5.3 Variable Names

During normal data processing, the user will have to create named variables to hold spectra
etc. These must conform to the normal python syntax, specifically they cannot contain
“special” characters such as $ etc and cannot start with a number (but can contain num-
bers). Variable (and function) names are case sensitive.

3

3.5.4 Unix Interaction

Basic unix shell commands (pwd, ls, cd etc) can be issued from within ASAP. This allows
the user to do things like look at files in the current directory. The shell command “cd”
works within ASAP, allowing the user to change between data directories. Unix programs
cannot be run this way, but the shell escape “!” can be used to run arbitrary programs.
E.g.

ASAP>pwd

ASAP>ls

ASAP>cd /my/data/directory

ASAP>! mozilla&

3.6 Help

ASAP has built in help for all functions. To get a list of functions type:

ASAP>commands()

To get help on specific functions, the built in help needs to be given the object and function
name. E.g.

ASAP>help scantable.get_scan # or help(scantable.get_scan)

ASAP>help scantable.stats

ASAP>help plotter.plot

ASAP>help fitter.plot

ASAP>scans = scantable(’mydata.asap’)

ASAP>help scans.get_scan # Same as above

Global functions just need their name

ASAP>help average_time

Note that if you just type help the internal ipython help is invoked, which is probably not
what you want. Type ^-d (control-d) to escape from this.

3.7 Customisation - .asaprc

ASAP use an .asaprc file to control the user’s preference of default values for various
functions arguments. This includes the defaults for arguments such as insitu, scantable
freqframe and the plotters set mode values. The help on individual functions says which
arguments can be set default values from the .asaprc file. To get a sample contents for the
.asaprc file use the command list rcparameters.

Common values include:

4

apply operations on the input scantable or return new one

insitu : False

default output format when saving scantable

scantable.save : ASAP

default frequency frame to set when function

scantable.set_freqframe is called

scantable.freqframe : LSRK

auto averaging on read

scantable.autoaverage : True

For a complete list of .asaprc values, see the Appendix.

4 Scantables

4.1 Description

4.1.1 Basic Structure

ASAP data handling works on objects called scantables. A scantable holds your data, and
also provides functions to operate upon it.

The building block of a scantable is an integration, which is a single row of a scantable.
Each row contains just one spectrum for each beam, IF and polarisation. For example
Parkes OH-multibeam data would normally contain 13 beams, 1 IF and 2 polarisations,
Parkes methanol-multibeam data would contain 7 beams, 2 IFs and 2 polarisations while
the Mopra 8-GHz MOPS filterbank will produce one beam, many IFs, and 2-4 polarisations.

All of the combinations of Beams/IFs an Polarisations are contained in separate rows. These
rows are grouped in cycles (same time stamp).

A collection of cycles for one source is termed a scan (and each scan has a unique numeric
identifier, the SCANNO). A scantable is then a collection of one or more scans. If you have
scan-averaged your data in time, i.e. you have averaged all cycles within a scan, then each
scan would hold just one (averaged) integration.

Many of the functions which work on scantables can either return a new scantable with
modified data or change the scantable insitu. Which method is used depends on the users
preference. The default can be changed via the .asaprc resource file.

For example a Mopra scan with a 4s integration time, two IFs and dual polarisations has
two (2s) cycles.

SCANNO CYCLENO BEAMNO IFNO POLNO

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

5

0 0 0 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

4.1.2 Contents

A scantable has header information and data (a scantable is actually an AIPS++ Table
and it is generally stored in memory when you are manipulating it with ASAP. You can
save it to disk and then browse it with the AIPS++ Table browser if you know how to do
that !).

The data are stored in columns (the length of a column is the number of rows/spectra of
course).

Two important columns are those that describe the frequency setup. We mention them
explicitly here because you need to be able to understand the presentation of the frequency
information and possibly how to manipulate it.

These columns are called FREQ ID and MOLECULE ID. They contain indices, for each
IF, pointing into tables with all of the frequency and rest-frequency information for that
integration.

There are of course many other columns which contain the actual spectra, the flags, the
Tsys, the source names and so on.

There is also a function summary to list a summary of the scantable. You will find this very
useful.

Example:

ASAP>scans = scantable(’MyData.rpf’)

ASAP>scans.summary() # Brief listing

Equivalent to brief summary function call

ASAP>print scan

The summary function gives you a scan-based summary, presenting the scantable as a
cascading view of Beams and IFs. Note that the output of summary is redirected into your
current pager specified by the $PAGER environment variable. If you find the screen is reset
to the original state when summary is finished (i.e. the output from summary disappears),
you may need to set the $LESS environment variable to include the -X option.

4.2 Data Selection

ASAP contains flexible data selection. Data can be selected based on IF, beam, polarisation,
scan number as well as values such as Tsys. Advanced users can also make use of the
AIPS++ TAQL language to create selections based on almost any of the values recorded.

6

Selection is based on a selector object. This object is created and various selection
functions applied to it (set ifs, set beams etc). The selection object then must be applied
to a scantable using the set selection function. A single selection object can be created
and setup then applied to multiple scantables.

Once a selection has been applied, all following functions will only “see” the selected spectra
(including functions such as summary). The selection can then be reset and all spectra are
visible. Note that if functions such as copy are run on a scantable with active selection,
only the selected spectra are copied.

The common selection functions are:

set beams Select beams by index number
set ifs Select ifs by index number
set name Select by source name. Can contain “*” as a wildcard, e.g. “Orion* R”.
set ifs Select IFs by index number
set polarisation Select by polarisation index or name. If polarisation names are

given, the data will be on-the-fly onverted (for example from linears
to Stokes).

set query Set query directly. For power users only!
set tsys Select data based on Tsys. Also example of user definable query.
reset Reset the selection to include all spectra.

Note that all indices are zero based.

Examples:

ASAP>selection = selector() # Create selection object

ASAP>selection.set_ifs(0) # Just select the first IF

ASAP>scans.set_selection(selection) # Apply the selection

ASAP>print scans # Will just show the first IF

ASAP>selection.set_ifs([0,1]) # Select the first two IFs

ASAP>selection.set_beams([1,3,5]) # Also select three of the beams

ASAP>scans.set_selection(selection) # Apply the selection

ASAP>selection.set_name(’G308*’) # Select by source name

ASAP>selection.reset() # Turn off selection

ASAP>scans.set_selection(selection) # Apply the reset selection

4.3 State

Each scantable contains ”state”; these are properties applying to all of the data in the
scantable.

Examples are the selection of beam, IF and polarisation, spectral unit (e.g. km/s), frequency
reference frame (e.g. BARY) and velocity Doppler type (e.g. RADIO).

7

4.3.1 Units, Doppler and Frequency Reference Frame

The information describing the frequency setup for each integration is stored fundamentally
in frequency in the reference frame of observation (E.g. TOPO).

When required, this is converted to the desired reference frame (e.g. LSRK), Doppler (e.g.
OPTICAL) and unit (e.g. km/s) on-the-fly. This is important, for example, when you are
displaying the data or fitting to it. The reference frame is set on file read to the value set
in the user .asaprc file.

For units, the user has the choice of frequency, velocity or channel. The set unit function
is used to set the current unit for a scantable. All functions will (where relevant) work with
the selected unit until this changes. This is mainly important for fitting (the fits can be
computed in any of these units), plotting and mask creation.

The velocity definition can be changed with the set doppler function, and the frequency
reference frame can be changed with the set freqframe function.

Example usage:

ASAP>scans = scantable(’2004-11-23_1841-P484.rpf’) # Read in the data

ASAP>scans.set_freqframe(’LSRK’) # Use the LSR velocity frame

ASAP>scans.set_unit(’km/s’) # Use velocity for plots etc from now on

ASAP>scans.set_doppler(’OPTICAL’) # Use the optical velocity convention

ASAP>scans.set_unit(’MHz’) # Use frequency in MHz from now on

4.3.2 Rest Frequency

ASAP reads the line rest frequency from the RPFITS file when reading the data. The values
stored in the RPFITS file are not always correct and so there is a function set restfreq

to set the rest frequencies for the currently selected data.

For each integration, there is a rest-frequency per IF (the rest frequencies are just stored as
a list with an index into them). There are a few ways to set the rest frequencies with this
function.

If you specify just one rest frequency, then it is set for all IF.

Set all IFs

ASAP>scans.set_restfreqs(freqs=1.667359e9)

If set a rest frequency for each IF, specify a list of frequencies (of length the number of IFs).
Regardless of the source, the rest frequency will be set for each IF to the corresponding
value in the provided list.

Set rest frequency for all IFs

ASAP>scans.set_restfreqs(freqs=[1.6654018e9,1.667359e9,])

A predetermined “line catalog” can be used to set the rest frequency. See section §10.

8

4.3.3 Masks

Many tasks (fitting, baseline subtraction, statistics etc) should only be run on range of
channels. Depending on the current “unit” setting this range is set directly as channels,
velocity or frequency ranges. Internally these are converted into a simple boolean mask
for each channel of the abscissa. This means that if the unit setting is later changed,
previously created mask are still valid. (This is not true for functions which change the
shape or shift the frequency axis). You create masks with the function create mask and this
specified the channels to be included in the selection. When setting the mask in velocity,
the conversion from velocity to channels is based on the current selection, specified row and
selected frequency reference frame.

Note that for multi IF data with different number of channels per IF a single mask cannot
be applied to different IFs. To use a mask on such data the selector should be applied to
select all IFs with the same number of channels.

Example :

Select channel range for baselining

ASAP>scans.set_unit(’channels’)

ASAP>msk = scans.create_mask([100,400],[600,800])

Select velocity range for fitting

ASAP>scans.set_unit(’km/s’)

ASAP>msk = scans.create_mask([-30,-10])

Sometimes it is more convenient to specify the channels to be excluded, rather included.
You can do this with the “invert” argument.

Example :

ASAP>scans.set_unit(’channels’)

ASAP>msk = scans.create_mask([0,100],[900-1023], invert=True)

By default create mask uses the frequency setup of the first row to convert velocities into
a channel mask. If the rows in the data cover different velocity ranges, the scantable row
to use should be specified:

ASAP>scans.set_unit(’km/s’)

ASAP>msk = q.create_mask([-30,-10], row=5)

Because the mask is stored in a simple python variable, the users is able to combine masks
using simple arithmetic. To create a mask excluding the edge channels, a strong maser
feature and a birdie in the middle of the band:

ASAP>scans.set_unit(’channels’)

ASAP>msk1 = q.create_mask([0,100],[511,511],[900,1023],invert=True)

ASAP>scans.set_unit(’km/s’)

9

ASAP>msk2 = q.create_mask([-20,-10],invert=True)

ASAP>mask = msk1 and msk2

4.4 Management

During processing it is possible to create a large number of scan tables. These all consume
memory, so it is best to periodically remove unneeded scan tables. Use list scans to print
a list of all scantables and del to remove unneeded ones.

Example:

ASAP>list_scans()

The user created scantables are:

[’s’, ’scans’, ’av’, ’s2’, ’ss’]

ASAP>del s2

ASAP>del ss

5 Data Input

Data can be loaded in one of two ways; using the reader object or via the scantable con-
structor. The scantable method is simpler but the reader allows the user more control on
what is read.

5.1 Scantable constructor

This loads all of the data from filename into the scantable object scans and averages all the
data within a scan (i.e. the resulting scantable will have one row per scan). The recognised
input file formats are RPFITS, SDFITS (singledish fits), ASAP’s scantable format and
aips++ MeasurementSet2 format.

Example usage:

ASAP>scan = scantable(’2004-11-23_1841-P484.rpf’)

Don’t scan average the data

ASAP>scan = scantable(’2004-11-23_1841-P484.rpf’, average=False)

5.2 Reader object

For more control when reading data into ASAP, the reader object should be used. This has
the option of only reading in a range of integrations, only a specified beam or IF and does
not perform any scan averaging of the data, allowing analysis of the individual integrations.
Note that due to limitation of the RPFITS library, only one reader object can be open
at one time reading RPFITS files. To read multiple RPFITS files, the old reader must

10

be destroyed before the new file is opened. However, multiple readers can be created and
attached to SDFITS files.

Example usage:

ASAP>r = reader(’2003-03-16_082048_t0002.rpf’)

ASAP>r.summary()

ASAP>scan = r.read()

ASAP>del r

6 Basic Processing

In the following section, a simple data reduction to form a quotient spectrum of a single
source is followed. It has been assume that the .asaprc file has not been used to change
the insitu default value from True.

6.1 Auto quotient

Quotients can be computed “automatically”. This requires the data to have matching
source/reference pairs or one reference for multiple sources. Auto quotient assumes reference
scans have a trailing “ R” in the source name for data from Parkes and Mopra, and a trailing
“e” or “w” for data fro, Tidbinbilla.

ASAP>q = s.auto_quotient()

By default the quotient spectra is calculated to preserve continuum emission. If you wish
to remove the continuum contribution, use the preserve argument:

ASAP>q = s.auto_quotient(preserve=True)

If this is not sufficient the following alternative method can be used.

6.2 Separate reference and source observations

Most data from ATNF observatories distinguishes on and off source data using the file name.
This makes it easy to create two scantables with the source and reference data. As long
as there was exactly one reference observation for each on source observation for following
method will work.

For Mopra and Parkes data:

ASAP>r = scans.get_scan(’*_R’)

ASAP>s = scans.get_scan(’*_S’)

For Tidbinbilla data

ASAP>r = scans.get_scan(’*_[ew]’)

ASAP>s = scans.get_scan(’*_[^ew]’)

11

6.3 Make the quotient spectra

Use the quotient function

ASAP>q = s.quotient(r)

This uses the rows in scantable r as reference spectra for the rows in scantable s. Scantable
r must have either 1 row (which is applied to all rows in s) or both scantables must have
the same number of rows.

6.4 Time average separate scans

If you have observed the source with multiple source/reference cycles you will want to
scan-average the quotient spectra together.

ASAP>av = q.average_time()

If for some you want to average multiple sets of scantables together you can:

ASAP>av = average_time(q1, q2, q3)

The default is to use integration time weighting. The alternative is to use none, variance,
Tsys weighting, Tsys & integration time or median averaging.

ASAP>av = average_time(q, weight=’tintsys’)

To use variance based weighting, you need to supply a mask saying which channel range
you want it to calculate the variance from.

ASAP>msk = scans.create_mask([200,400],[600,800])

ASAP>av = average_time(scans, mask=msk, weight=’var’)

If you have not observed your data with Doppler tracking (or run freq align explicitly)
you should align the data in frequency before averaging.

ASAP>av = scans.average_time(align=True)

Note that, if needed, you should run gain el and opacity before you average the data in
time (§6.7.5 & 6.8).

6.5 Baseline fitting

To make a baseline fit, you must first create a mask of channels to use in the baseline fit.

ASAP>msk = scans.create_mask([100,400],[600,900])

ASAP>scans.poly_baseline(msk, order=1)

This will fit a first order polynomial to the selected channels and subtract this polynomial
from the full spectra.

12

6.5.1 Auto-baselining

The function auto poly baseline can be used to automatically baseline your data without
having to specify channel ranges for the line free data. It automatically figures out the
line-free emission and fits a polynomial baseline to that data. The user can use masks to fix
the range of channels or velocity range for the fit as well as mark the band edge as invalid.

Simple example

ASAP>scans.auto_poly_baseline(order=2,threshold=5)

order is the polynomial order for the fit. threshold is the SNR threshold to use to
deliminate line emission from signal. Generally the value of threshold is not too critical,
however making this too large will compromise the fit (as it will include strong line features)
and making it too small will mean it cannot find enough line free channels.

Other examples:

Don’t try and fit the edge of the bandpass which is noisier

ASAP>scans.auto_poly_baseline(edge=(500,450),order=3,threshold=3)

Only fit a given region around the line

ASAP>scans.set_unit(’km/s’)

ASAP>msk = scans.create_mask([-60,-20])

ASAP>scans.auto_poly_baseline(mask=msk,order=3,threshold=3)

6.6 Average the polarisations

If you are just interested in the highest SNR for total intensity you will want to average the
parallel polarisations together.

ASAP>scans.average_pol()

6.7 Calibration

For most uses, calibration happens transparently as the input data contains the Tsys mea-
surements taken during observations. The nominal “Tsys” values may be in Kelvin or
Jansky. The user may wish to supply a Tsys correction or apply gain-elevation and opacity
corrections.

6.7.1 Brightness Units

RPFITS files do not contain any information as to whether the telescope calibration was
in units of Kelvin or Janskys. On reading the data a default value is set depending on the
telescope and frequency of observation. If this default is incorrect (you can see it in the
listing from the summary function) the user can either override this value on reading the
data or later. E.g:

13

ASAP>scans = scantable(’2004-11-23_1841-P484.rpf’, unit=’Jy’)

Or in two steps

ASAP>scans = scantable(’2004-11-23_1841-P484.rpf’)

ASAP>scans.set_fluxunit(’Jy’)

6.7.2 Feed Polarisation

The RPFITS files also do not contain any information as to the feed polarisation. ASAP
will set a default based on the antenna, but this will often be wrong the data has been read,
the default can be changed using the set feedtype function with an argument of ’linear’
or ’circular’.

E.g:

ASAP>scans = scantable(’2004-11-23_1841-P484.rpf’)

ASAP>scans.set_feedtype(’circular’)

6.7.3 Tsys scaling

Sometime the nominal Tsys measurement at the telescope is wrong due to an incorrect
noise diode calibration. This can easily be corrected for with the scale function. By default,
scale only scans the spectra and not the corresponding Tsys.

ASAP>scans.scale(1.05, tsys=True)

6.7.4 Unit Conversion

To convert measurements in Kelvin to Jy (and vice versa) the global function convert flux

is needed. This converts and scales the data from K to Jy or vice-versa depending on what
the current brightness unit is set to. The function knows the basic parameters for some
frequencies and telescopes, but the user may need to supply the aperture efficiency, telescope
diameter or the Jy/K factor.

ASAP>scans.convert_flux() # If efficency known

ASAP>scans.convert_flux(eta=0.48) # If telescope diameter known

ASAP>scans.convert_flux(eta=0.48,d=35) # Unknown telescope

ASAP>scans.convert_flux(jypk=15) # Alternative

6.7.5 Gain-Elevation and Opacity Corrections

As higher frequencies (particularly >20 GHz) it is important to make corrections for atmo-
spheric opacity and gain-elevation effects.

Note that currently the elevation is not written correctly into Tidbinbilla rpfits files. This
means that gain-elevation and opacity corrections will not work unless these get recalculated.

ASAP>scans.recalc_azel() # recalculate az/el based on pointing

14

Gain-elevation curves for some telescopes and frequencies are known to ASAP (currently
only for Tidbinbilla at 20 GHz). In these cases making gain-corrections is simple. If the
gain curve for your data is not known, the user can supply either a gain polynomial or text
file tabulating gain factors at a range of elevations (see help scantable.gain el).

Examples:

ASAP>scans.gain_el() # If gain table known

ASAP>scans.gain_el(poly=[3.58788e-1,2.87243e-2,-3.219093e-4])

Opacity corrections can be made with the global function opacity. This should work on all
telescopes as long as a measurement of the opacity factor was made during the observation.

ASAP>scans.opacity(0.083)

Note that at 3 mm Mopra uses a paddle wheel for Tsys calibration, which takes opacity
effects into account (to first order). ASAP opacity corrections should not be used for Mopra
3-mm data.

6.8 Frequency Frame Alignment

When time averaging a series of scans together, it is possible that the velocity scales are
not exactly aligned. This may be for many reasons such as not Doppler tracking the
observations, errors in the Doppler tracking etc. This mostly affects very long integrations
or integrations averaged together from different days. Before averaging such data together,
they should be frequency aligned using freq align.

E.g.:

ASAP>scans.freq_align()

ASAP>av = average_time(scans)

A Global freq align command will be made eventually

To average together data taken on different days, which are in different scantables, each
scantable must aligned to a common reference time then the scantables averaged. The
simplest way of doing this is to allow ASAP to choose the reference time for the first
scantable then using this time for the subsequent scantables.

ASAP>scans1.freq_align() # Copy the refeference Epoch from the output

ASAP>scans2.freq_align(reftime=’2004/11/23/18:43:35’)

ASAP>scans3.freq_align(reftime=’2004/11/23/18:43:35’)

ASAP>av = average_time(scans1, scans2, scans3)

7 Scantable manipulation

While it is very useful to have many independent sources within one scantable, it is often
inconvenient for data processing. The get scan function can be used to create a new

15

scantable with a selection of scans from a scantable. The selection can either be on the source
name, with simple wildcard matching or set of scan ids. Internally this uses the selector
object, so for more complicated selection the selector should be used directly instead.

For example:

ASAP>ss = scans.get_scan(10) # Get the 11th scan (zero based)

ASAP>ss = scans.get_scan(range(10)) # Get the first 10 scans

ASAP>ss = scans.get_scan(range(10,20)) # Get the next 10 scans

ASAP>ss = scans.get_scan([2,4,6,8,10]) # Get a selection of scans

ASAP>ss = scans.get_scan(’345p407’) # Get a specific source

ASAP>ss = scans.get_scan(’345*’) # Get a few sources

ASAP>r = scans.get_scan(’*_R’) # Get all reference sources (Parkes/Mopra)

ASAP>s = scans.get_scan(’*_S’) # Get all program sources (Parkes/Mopra)

ASAP>r = scans.get_scan(’*[ew]’) # Get all reference sources (Tid)

ASAP>s = scans.get_scan(’*[^ew]’) # Get all program sources (Tid)

To copy a scantable the following does not work:

ASAP>ss = scans

as this just creates a reference to the original scantable. Any changes made to ss are also
seen in scans. To duplicate a scantable, use the copy function.

ASAP>ss = scans.copy()

8 Data Output

ASAP can save scantables in a variety of formats, suitable for reading into other packages.
The formats are:

ASAP This is the internal format used for ASAP. It is the only format that allows the user
to restore the data, fits etc. without loosing any information. As mentioned before,
the ASAP scantable is an AIPS++ Table (a memory-based table). This function just
converts it to a disk-based Table. You can the access that Table with the AIPS++
Table browser or any other AIPS++ tool.

SDFITS The Single Dish FITS format. This format was designed to for interchange between
packages, but few packages actually can read it.

ASCII A simple text based format suitable for the user to processing using Perl or, Python,
gnuplot etc.

16

MS2 Saves the data in an aips++ MeasurementSet V2 format. You can also access this
with the Table browser and other AIPS++ tools.

The default output format can be set in the users .asaprc file. Typical usages are:

ASAP>scans.save(’myscans’) # Save in default format

ASAP>scans.save(’myscans’, ’SDFITS’) # Save as SDFITS for export

ASAP>scans.save(’myscans’, overwrite=True) # Overwrite an existing file

9 Plotter

Scantable spectra can be plotted at any time. An asapplotter object is used for plotting,
meaning multiple plot windows can be active at the same time. On start up a default
asapplotter object is created called “plotter”. This would normally be used for standard
plotting.

The plotter, optionally, will run in a multi-panel mode and contain multiple plots per panel.
The user must tell the plotter how they want the data distributed. This is done using the
set mode function. The default can be set in the users .asaprc file. The units (and frame
etc) of the abscissa will be whatever has previously been set by set unit, set freqframe

etc.

Typical plotter usage would be:

ASAP>scans.set_unit(’km/s’)

ASAP>plotter.set_mode(stacking=’p’,panelling=’t’)

ASAP>plotter.plot(scans)

This will plot multiple polarisation within each plot panel and each scan row in a separate
panel.

Other possibilities include:

Plot multiple IFs per panel

ASAP>plotter.set_mode(stacking=’i’,panelling=’t’)

Plot multiple beams per panel

ASAP>plotter.set_mode(stacking=’b’,panelling=’t’)

Plot one IF per panel, time stacked

ASAP>plotter.set_mode(’t’, ’i’)

Plot each scan in a seperate panel

ASAP>plotter.set_mode(’t’, ’s’)

17

9.1 Plot Selection

The plotter can plot up to 25 panels and stacked spectra per panel. If you have data
larger than this (or for your own sanity) you need to select a subset of this data. This is
particularly true for multibeam or multi IF data. The selector object should be used for
this purpose. Selection can either be applied to the scantable or directly to the plotter, the
end result is the same. You don’t have to reset the scantable selection though, if you set
the selection on the plotter.

Examples:

ASAP>selection = selector()

Select second IF

ASAP>selection.set_ifs(1)

ASAP>plotter.set_selection(selection)

Select first 4 beams

ASAP>selection.set_beams([0,1,2,3])

ASAP>plotter.set_selection(selection)

Select a few scans

ASAP>selection.set_scans([2,4,6,10])

ASAP>plotter.set_selection(selection)

Multiple selection

ASAP>selection.set_ifs(1)

ASAP>selection.set_scans([2,4,6,10])

ASAP>plotter.set_selection(selection)

9.2 Plot Control

The plotter window has a row of buttons on the lower left. These can be used to control
the plotter (mostly for zooming the individual plots). From left to right:

Home This will unzoom the plots to the original zoom factor
Plot history (left and right arrow) The plotter keeps a history of zoom settings. The

left arrow sets the plot zoom to the previous value. The right arrow
returns back again. This allows you, for example, to zoom in on one
feature then return the plot to how it was previously.

Pan (The Cross) This sets the cursor to pan, or scroll mode allowing you to
shift the plot within the window. Useful when zoomed in on a feature.

Zoom (the letter with the magnifying glass) lets you draw a rectangle around a
region of interest then zooms in on that region. Use the plot history to
unzoom again.

Adjust (rectangle with 4 arrows) adjust subplot parameters (space at edge of
plots)

Save (floppy disk). Save the plot as a postscript or .png file

18

You can also type “g” in the plot window to toggle on and off grid lines. Typing ’l’ turns
on and off logarithmic Y-axis.

9.3 Other control

The plotter has a number of functions to describe the layout of the plot. These include
set legend, set layout and set title.

To set the exact velocity or channel range to be plotted use the set range function. To
reset to the default value, call set range with no arguments. E.g.

ASAP>scans.set_unit(’km/s’)

ASAP>plotter.plot(scans)

ASAP>plotter.set_range(-150,-50)

ASAP>plotter.set_range() # To reset

Both the range of the “x” and “y” axis can be set at once, if desired:

ASAP>plotter.set_range(-10,30,-1,6.6)

To save a hardcopy of the current plot, use the save function, e.g.

ASAP>plotter.save(’myplot.ps’)

ASAP>plotter.save(’myplot.png’, dpi=80)

9.4 Plotter Customisation

The plotter allows the user to change most properties such as text size and colour. The
commands function and help asapplotter list all the possible commands that can be used
with the plotter.

set colors Change the default colours used for line plotting. Colours can be given
either by name, using the html standard (e.g. red, blue or hotpink), or
hexadecimal code (e.g. for black #000000). If less colours are specified
than lines plotted , the plotter cycles through the colours. Example:
ASAP> plotter.set colors(’red blue green’)

ASAP> plotter.set colors(‘#0000 blue #FF00FF’)

set linestyles Change the line styles used for plots. Allowable values are ’line’, ’dashed’,
’dotted’, ’dashdot’, ’dashdotdot’ and ’dashdashdot. Example:
ASAP>plotter.set linestyles(’line dash cotted datshot.)

ASAP>plotter.set font(size=10)

19

set font Change the font style and size. Example
ASAP>plotter.set font(weight=’bold’)

ASAP>plotter.set font(size=10)

ASAP>plotter.set font(style=’italic’)

set layout Change the multi-panel layout, i.e. now many rows and columns
ASAP>plotter.set layout(3,2)

set legend Set the position, size and optional value of the legend
ASAP>plotter.set legend(fontsize=16)

ASAP>plotter.set legend(mode=0) # ASAP chooses where to put

the legend

ASAP>plotter.set legend(mode=4) # Put legend on lower right

ASAP>plotter.set legend(mode=-1) # No legend

ASAP>plotter.set legend(mp=[’RR’,’LL’]) # Specify legend

labels

ASAP>plotter.set legend(mp=[r’^{12}CO’,r’${̂13}CO$’]) #

Latex labels

set title Set the plot title. If multiple panels are plotted, multiple titles have to
be specified
ASAP>plotter.set title(‘G323.12−1.79‘)
ASAP>plotter.set title([‘SiO‘, ’Methanol’], fontsize=18)

9.5 Plotter Annotations

The plotter allows various annotations (lines, arrows, text and “spans”) to be added to
the plot. These annotations are “temporary”, when the plotter is next refreshed (e.g.
plotter.plot or plotter.set range) the annotations will be removed.

arrow(x,y,x+dx,y+dy) Draw an arrow from a specified (x,y) position to (x+dx,

y+dy). The values are in world coordinates. Addition argu-
ments which must be passed are head width and head length

ASAP>plotter.arrow(-40,7,35,0,head width=0.2,

head length=10)

axhline(y, xmin, xmax) Draw a horizontal line at the specified y position (in world
coordinates) between xmin and xmax (in relative coordinates,
i.e. 0.0 is the left hand edge of the plot while 1.0 is the right
side of the plot).
ASAP>plotter.axhline(6.0,0.2,0.8)

avhline(x, ymin, ymax) Draw a vertical line at the specified x position (in world coordi-
nates) between ymin and ymax (in relative coordinates, i.e. 0.0
is the left hand edge of the plot while 1.0 is the right side of the
plot).
ASAP>plotter.axvline(-50.0,0.1,1.0)

20

axhspan(ymin, ymax,

xmin, xmax)

Overlay a transparent colour rectangle. ymin and ymax are
given in world coordinates while xmin and xmax are given in
relative coordinates
ASAP>plotter.axhspan(2,4,0.25,0.75)

axvspan(xmin, xmax,

ymin, ymax)

Overlay a transparent colour rectangle. ymin and ymax are
given in relative coordinates while xmin and xmax are given in
world coordinates
ASAP>plotter.axvspan(-50,60,0.2,0.5)

text(x, y, str) Place the string str at the given (x,y) position in world coor-
dinates.
ASAP>plotter.text(-10,7,"CO")

These functions all take a set of kwargs commands. These can be used to set colour,
linewidth fontsize etc. These are standard matplotlib settings. Common ones include:

color, facecolor, edgecolor

width, linewidth

fontsize

fontname Sans, Helvetica, Courier, Times etc
rotation Text rotation (horizontal, vertical)
alpha The alpha transparency on 0-1 scale

Examples:

ASAP>plotter.axhline(6.0,0.2,0.8, color=’red’, linewidth=3)

ASAP>plotter.text(-10,7,"CO", fontsize=20)

10 Line Catalog

ASAP can load and manipulate line catlogs to retrieve rest frequencies for set restfreqs

and for line identification in the plotter. All line catalogs are loaded into a “linecatalog”
object.

No line catalogs are built into ASAP, the user must load a ASCII based table (which can
optionally be saved in an internal format) either of the users own creation or a standard
line catalog such as the JPL line catalog or Lovas. The ATNF asap ftp area as copies of
the JPL and Lovas catalog in the appropriate format:

ftp://ftp.atnf.csiro.au/pub/software/asap/data

10.1 Loading a Line Catalog

The ASCII text line catalog must have at least 4 columns. The first four columns must
contain (in order): Molecule name, frequency in MHz, frequency error and “intensity” (any
units). If the molecule name contains any spaces, they must be wrapped in quotes "".

A sample from the JPL line catalog:

21

H2D+ 3955.2551 228.8818 -7.1941

H2D+ 12104.7712 177.1558 -6.0769

H2D+ 45809.2731 118.3223 -3.9494

CH 701.6811 .0441 -7.1641

CH 724.7709 .0456 -7.3912

CH 3263.7940 .1000 -6.3501

CH 3335.4810 .1000 -6.0304

To load a line catalog then save it in the internal format:

ASAP>jpl = linecatalog(’jpl_pruned.txt’)

ASAP>jpl.save(’jpl.tbl’)

Later the saved line catalog can reloaded:

ASAP>jpl = linecatalog(’jpl.tbl’)

NOTE: Due to a bug in ipython, if you do not del the linecatalog table before quiting asap,
you will be left with temporary files. It is safe to delete these once asap has finished.

10.2 Line selection

The linecatalog has a number of selection functions to select a range of lines from a larger
catalog (the JPL catalog has >180000 lines for example). set frequency limits selects
on frequency range, set strength limits selects on intensity while set name selects on
molecule name (wild cards allowed). The summary function lists the currently selected
lines.

ASAP>jpl = linecatalog(’jpl.tbl’)

ASAP>jpl.set_frequency_limits(80,115,’GHz’) # Lines for 3mm receiver

ASAP>jpl.set_name(’*OH’) # Select all alcohols

ASAP>jpl.set_name(’OH’) # Select only OH molecules

ASAP>jpl.summary()

ASAP>jpl.reset() # Selections are accumulative

ASAP>jpl.set_frequency_limits(80,115,’GHz’)

ASAP>jpl.set_strength_limits(-2,10) # Select brightest lines

ASAP>jpl.summary()

10.3 Using Linecatalog

The line catalogs can be used for line overlays on the plotter or with set restfreq.

22

10.3.1 Plotting linecatalog

The plotter plot lines function takes a line catalog as an argument and overlays the lines
on the spectrum. Currently this only works when plotting in units of frequency (Hz, GHz
etc). If a large line catalog has been loaded (e.g. JPL) it is highly recommended that
you use the selection functions to narrow down the number of lines. By default the line
catalog overlay is plotted assuming a line velocity of 0.0. This can be set using the doppler
argument (in km/s). Each time plot lines is called the new lines are added to any existing
line catalog annotations. These are all removed after the next call to plotter.plot().

ASAP>jpl = linecatalog(’jpl.tbl’)

ASAP>jpl.set_frequency_limits(23,24,’GHz’)

ASAP>data.set_unit(’GHz’) # Only works with freq axis currently

ASAP>plotter.plot(data)

ASAP>plotter.plot_lines(jpl)

ASAP>plotter.plot() # Reset plotter

ASAP>plotter.plot_lines(jpl,doppler=-10,location=’Top’)

On top with -10 km/s velocity

10.3.2 Setting Rest Frequencies

A linecatalog can be used as an argument for set restfreqs. If a personal line catalog has
been used (which has the same size as the number of number of IFs) or linecatalog selection
has been used to reduce the number of entries, the line catalog can be used directly as an
argument to set restfreqs, e.g.:

ASAP>jpl = linecatalog(’jpl.tbl’)

ASAP>jpl.set_frequency_limits(23.66,23.75,’GHz’)

ASAP>data = scantable(’data.rpf’)

ASAP>data.set_restfreqs(jpl)

If a larger linecatalog is used, individual elements can be used. Use the summary to get the
index number of the rest frequency you wish to use. E.g.:

ASAP>jpl.summary()

ASAP>data.set_restfreqs([jpl[11],[jpl[21]])

For data with many IFs, such as from MOPS, the user it is recommended that the user
creates their own line cstalog for the data and use this to set the rest frequency for each IF.

11 Fitting

Currently multicomponent Gaussian function is available. This is done by creating a fitting
object, setting up the fit and actually fitting the data. Fitting can either be done on a

23

single scantable selection or on an entire scantable using the auto fit function. If single
value fitting is used, and the current selection includes multiple spectra (beams, IFs, scans
etc) then the first spectrum in the scantable will be used for fitting.

ASAP>f = fitter()

ASAP>f.set_function(gauss=2) # Fit two Gaussians

ASAP>f.set_scan(scans)

ASAP>selection = selector()

ASAP>selection.set_polarisations(1) # Fit the second polarisation

ASAP>scans.set_selection(selection)

ASAP>scans.set_unit(’km/s’) # Make fit in velocity units

ASAP>f.fit(1) # Run the fit on the second row in the table

ASAP>f.plot() # Show fit in a plot window

ASAP>f.get_parameters() # Return the fit paramaters

This auto-guesses the initial values of the fit and works well for data without extra confusing
features. Note that the fit is performed in whatever unit the abscissa is set to.

If you want to confine the fitting to a smaller range (e.g. to avoid band edge effects or RFI
you must set a mask.

ASAP>f = fitter()

ASAP>f.set_function(gauss=2)

ASAP>scans.set_unit(’km/s’) # Set the mask in channel units

ASAP>msk = s.create_mask([1800,2200])

ASAP>scans.set_unit(’km/s’) # Make fit in velocity units

ASAP>f.set_scan(s,msk)

ASAP>f.fit()

ASAP>f.plot()

ASAP>f.get_parameters()

If you wish, the initial parameter guesses can be specified and specific parameters can be
fixed:

ASAP>f = fitter()

ASAP>f.set_function(gauss=2)

ASAP>f.set_scan(s,msk)

ASAP>f.fit() # Fit using auto-estimates

Set Peak, centre and fwhm for the second gaussian.

Force the centre to be fixed

ASAP>f.set_gauss_parameters(0.4,450,150,0,1,0,component=1)

ASAP>f.fit() # Re-run the fit

The fitter plot function has a number of options to either view the fit residuals or the
individual components (by default it plots the sum of the model components).

Examples:

24

Plot the residual

ASAP>f.plot(residual=True)

Plot the first 2 componentsa

ASAP>f.plot(components=[0,1])

Plot the first and third component plus the model sum

ASAP>f.plot(components=[-1,0,2]) # -1 means the compoment sum

11.1 Fit saving

One you are happy with your fit, it is possible to store it as part of the scantable.

ASAP>f.store_fit()

This will be saved to disk with the data, if the “ASAP” file format is selected. Multiple fits
to the same data can be stored in the scantable.

The scantable function get fit can be used to retrieve the stored fits. Currently the fit
parameters are just printed to the screen.

ASAP>scans.get_fit(4) # Print fits for row 4

A fit can also be exported to an ASCII file using the store fit function. Simply give the
name of the output file requires as an argument.

ASAP>f.store_fit(’myfit.txt’)

12 Polarisation

Currently ASAP only supports polarmetric analysis on linearly polarised feeds and the cross
polarisation products measured. Other cases will be added on an as needed basis.

Conversions of linears to Stokes or Circular polarisations are done “on-the-fly”. Leakage
cannot be corrected for nor are there routines to calibrate position angle offsets.

12.1 Simple Calibration

It is possible that there is a phase offset between polarisation which will effect the phase of
the cross polarisation correlation, and so give rise to spurious polarisation. rotate xyphase

can be used to correct for this error. At this point, the user must know how to determine
the size of the phase offset themselves.

ASAP>scans.rotate_xyphase(10.5) # Degrees

25

Note that if this function is run twice, the sum of the two values is applied because it is
done in-situ.

A correction for the receiver parallactic angle may need to be made, generally because of
how it is mounted. Use rotate linpolphase to correct the position angle. Running this
function twice results in the sum of the corrections being applied because it is applied
in-situ.

ASAP>scans.rotate_linpolphase(-45) # Degrees; correct for receiver mounting

If the sign of the complex correlation is wrong (this can happen depending on the correlator
configuration), use invert phase to change take the complex conjugate of the complex
correlation term. This is always performed in-situ.

ASAP>scans.invert_phase()

Depending on how the correlator is configured, “BA” may be correlated instead of “AB”.
Use swap linears to correct for this problem:

ASAP>scans.swap_linears()

12.2 Conversion

Data can be permanently converted between linear and circular polarisations and stokes.

ASAP>stokescans = linearscans.convert_pol("stokes")

12.3 Plotting

To plot Stokes values, a selector object must be created and the set polarisation function
used to select the desired polarisation products.

The values which can be plotted include a selection of [I,Q,U,V], [I, Plinear, Pangle, V],
[RR, LL] or [XX, YY, Real(XY), Imaginary(XY)]. (Plinear and Pangle are the percentage
and position angle of linear polarisation).

Example:

ASAP>selection = selector()

ASAP>selection.set_polarisations(‘‘I Q U V’’)

ASAP plotter.set_selection(selection); # Select I, Q, U \& V

ASAP>selection.set_polarisations(‘‘I Q’’)

ASAP plotter.set_selection(selection); # Select just I \& Q

ASAP>selection.set_polarisations(‘‘RR LL’’)

26

ASAP plotter.set_selection(selection); # Select just RR \& LL

ASAP>selection.set_polarisations(‘‘XX YY’’)

ASAP plotter.set_selection(selection); # Select linears

ASAP>selection.set_polarisations(‘‘I Plinear’’)

ASAP plotter.set_selection(selection); # Fractional linear

ASAP>selection.set_polarisations(‘‘Pangle’’)

ASAP plotter.set_selection(selection); # Position angle

Scan, beam and IF selection are also available in the selector object as describe in section 4.2.

12.4 Saving

When saving data using the save function, the stokes argument can be used to save the
data as Stoke values when saving in FITS format.

Example:

ASAP>scans.save(’myscan.sdfits’, ’SDFITS’, stokes=True)

13 Specialised Processing

13.1 Multibeam MX mode

MX mode is a specific observing approach with a multibeam where a single source is ob-
served cycling through each beam. The scans when the beam is off source is used as a
reference for the on-source scan. The function mx quotient is used to make a quotient
spectrum from an MX cycle. This works averaging the “off-source” scans for each beam
(either a median average or mean) and using this as a reference scan in a normal quotient
(for each beam). The final spectrum for each beam is returned on a new scantable contain-
ing single scan (it the scan numbers are re-labelled to be the same). Note that the current
version of mx quotient only handles a single MX cycle, i.e. if each beam has observed the
source multiple times you will need to use the selector object multiple times to select a
single MX cycle, run mx quotient for each cycle then merge the resulting scan tables back
together.

Example:

ASAP>scans = scantable(’mydata.rpf’)

ASAP>q = scans.mx_quotient()

ASAP>plotter.plot(q)

The function average beam averages multiple beam data together. This is need if MX mode
has been used to make a long integration on a single source. E.g.

27

ASAP>av = q.average_beam()

13.2 Frequency Switching

FILL ME IN

13.3 Disk Based Processing

Normally scantables exist entirely in memory during an ASAP session. This has the ad-
vantage of speed, but causes limits on the size of the dataset which can be loaded. ASAP
can use “disk based” scan tables which cache the bulk of the scantable on disk and require
significantly less memory usage.

To use disk based tables you either need to change the default in your .asapr file, e.g.

scantable.storage : disk

or use set the “rc” value while running asap to change this on-the-fly. E.g.

ASAP>rc(’scantable’,storage=’disk’)

ASAP>data = scantable(’data.rpf’) # Loaded using disk based table

ASAP>rc(’scantable’,storage=’memory’) # Memory tables will be used now

Changing the “rc” value affects the next time the scantable constructor is called.

NOTE: Currently a bug in ipython means temporary files are not cleaned up properly
when you exit ASAP. If you use disk based scan tables your directory will be left with
’tabXXXXX X’ directories. These can be safely removed if ASAP is not running.

14 Scantable Mathematics

It is possible to to simple mathematics directly on scantables from the command line using
the +, -, *, / operators as well as their cousins +=, -= *=, /=. This works between a
scantable and a float. (Note that it does not work for integers).

Currently mathematics between two scantables is not available

ASAP>scan2 = scan1+2.0

ASAP>scan *= 1.05

15 Scripting

Because ASAP is based on python, it easy for the user write their own scripts and functions
to process data. This is highly recommended as most processing of user data could then
be done in a couple of steps using a few simple user defined functions. A Python primer is

28

beyond the scope of this userguide. See the ASAP home pages for a scripting tutorial or
the main python website for comprehensive documentation.

http://www.atnf.csiro.au/computing/software/asap/tutorials

http://www.python.org/doc/Introduction.html

15.1 Running scripts

The ASAP global function execfile reads the named text file and executes the contained
python code. This file can either contain function definitions which will be used in subse-
quent processing or just a set of commands to process a specific dataset.

15.2 asapuserfuncs.py

The file ∼/.asap/asapuserfuncs.py is automatically read in when ASAP is started. The user
can use this to define a set of user functions which are automatically available each time
ASAP is used. The execfile function can be called from within this file.

16 Worked examples

In the following section a few examples of end-to-end processing of some data in ASAP are
given.

16.1 Mopra

The following example is of some dual polarisation, position switched data from Mopra.
The source has been observed multiple times split into a number of separate RPFITS files.
To make the processing easier, the first step is to cat the separate RPFITS files together
and load as a whole (future versions of ASAP will make this unnecessary).

get a list of the individual rpfits files in the current directory

myfiles = list_files()

Load the data into a scantable

data = scantable(myfiles)

print data

Form the quotient spectra

q = data.auto_quotient()

print q

Look at the spectra

plotter.plot(q)

Set unit and reference frame

29

q.set_unit(’km/s’)

q.set_freqframe(’LSRK’)

Average all scans in time, aligning in velocity

av = q.average_time(align=True)

plotter.plot(av)

Remove the baseline

msk = av.create_mask([100,130],[160,200])

av.poly_baseline(msk,2)

Average the two polarisations together

iav = av.average_pol()

print iav

plotter.plot(iav)

Set a sensible velocity range on the plot

plotter.set_range(85,200)

Smooth the data a little

av.smooth(’gauss’,4)

plotter.plot()

Fit a guassian to the emission

f = fitter()

f.set_function(gauss=1)

f.set_scan(av)

f.fit()

View the fit

f.plot()

Get the fit parameters

f.get_parameters()

16.2 Parkes Polarimetry

The following example is processing of some Parkes polarimetric observations of OH masers
at 1.6 GHz. Because digital filters where used in the backend, the baselines are stable
enough not to require a quotient spectra. The 4 MHz bandwidth is wide enough to observe
both the 1665 and 1667 MHz OH maser transitions. Each source was observed once for
about 10 minutes. Tsys information was not written to the RPFITS file (a nominal 25K
values was used), so the amplitudes need to be adjusted based on a separate log file. A
simple user function is used to simplify this, contained in a file called mypol.py:

30

def xyscale(data,xtsys=1.0,ytsys=1.0,nomtsys=25.0) :

selection = selector()

selection.set_polarisations(0)

data.set_selection(selection)

data.scale(xtsys/nomtsys)

selection.set_polarisations(1)

data.set_selection(selection)

data.scale(ytsys/nomtsys)

selection.set_polarisations(0)

data.set_selection(selection)

data.scale((xtsys+ytsys)/(2*nomtsys))

selection.set_polarisations(0)

data.set_selection(selection)

data.scale((xtsys+ytsys)/(2*nomtsys))

The typical ASAP session would be

Remind ourself the name of the rpfits files

ls

Load data from an rpfits file

d1665 = scantable(’2005-10-27_0154-P484.rpf’)

Check what we have just loaded

d1665.summary()

View the data in velocity

d1665.set_unit(’km/s’)

d1665.set_freqframe(’LSRK’)

Correct for the known phase offset in the crosspol data

d1665.rotate_xyphase(-4)

Create a copy of the data and set the rest frequency to the 1667 MHz

transition

d1667 = d1665.copy()

d1667.set_restfreqs([1667.3590], ’MHz’)

d1667.summary()

Copy out the scan we wish to process

g351_5 = d1665.get_scan(’351p160’)

g351_7 = d1667.get_scan(’351p160’)

31

Baseline both

msk = g351_5.create_mask([-30,-25],[-5,0])

g351_5.poly_baseline(msk,order=1)

msk = g351_7.create_mask([-30,-25],[-5,0])

g351_7.poly_baseline(msk,order=1)

Plot the data. The plotter can only plot a single scantable

So we must merge the two tables first

plotscans = merge(g351_5, g351_7)

plotter.plot(plotscans) # Only shows one panel

Tell the plotter to stack polarisation and panel scans

plotter.set_mode(’p’,’s’)

Correct for the Tsys using our predefined function

execfile(’mypol.py’) # Read in the function xyscale

xyscale(g351_5,23.2,22.7) # Execute it on the data

xyscale(g351_7,23.2,22.7)

Only plot the velocity range of interest

plotter.set_range(-30,10)

Update the plot with the baselined data

plotter.plot()

Look at the various polarisation products

selection = selector()

selection.set_polarisations(‘‘RR LL’’)

plotter.set_selection(selection)

selection.set_polarisations(‘‘I Plinear’’)

plotter.set_selection(selection)

selection.set_polarisations(‘‘I Q U V’’)

plotter.set_selection(selection)

Save the plot as postscript

plotter.save(’g351_stokes.ps’)

Save the process spectra

plotscans.save(’g351.asap’)

32

16.3 Tidbinbilla

The following example is processing of some Tidbinbilla observations of NH3 at 12 mm.
Tidbinbilla has (at the time of observations) a single polarisation, but can process two IFs
simultaneously. In the example, the first half of the observation was observing the (1,1)
and (2,2) transitions simultaneously). The second half observed only the (4,4) transition
due to bandwidth limitations. The data is position switched, observing first an reference to
the west, then the source twice and finally reference to the east.

Load the rpfits file and inspect

d = scantable(’2003-03-16_082048_t0002.rpf’)

print d

Make the quotient spectra

q = d.auto_quotient()

print q

del d

Plot/select in velocity

q.set_freqframe(’LSRK’)

q.set_unit(’km/s’)

Correct for gain/el effects

q.recalc_azel() # Tid does not write the elevation

q.gain_el()

q.opacity(0.05)

Seperate data from the (1,1)&(2,2) and (4,4) transitions

g1 = q.get_scan(range(6)) # scans 0..5

g2 = q.get_scan(range(6,12)) # scans 6..11

Align data in velocity

g1.freq_align()

g2.freq_align()

Average individual scans

a1 = g1.average_time()

a2 = g2.average_time()

Rpfits file only contains a single rest frequency. Set both

a1.set_restfreqs([23694.4700e6,23722.6336e6])

plotter.plot(a1)

plotter.set_mode(’i’,’t’)

33

a1.auto_poly_baseline()

plotter.plot()

a1.smooth(’gauss’,5)

plotter.plot()

34

17 Appendix

17.1 Function Summary

[The scan container]

scantable - a container for integrations/scans

(can open asap/rpfits/sdfits and ms files)

copy - returns a copy of a scan

get_scan - gets a specific scan out of a scantable

(by name or number)

drop_scan - drops a specific scan out of a scantable

(by number)

set_selection - set a new subselection of the data

get_selection - get the current selection object

summary - print info about the scantable contents

stats - get specified statistic of the spectra in

the scantable

stddev - get the standard deviation of the spectra

in the scantable

get_tsys - get the TSys

get_time - get the timestamps of the integrations

get_sourcename - get the source names of the scans

get_azimuth - get the azimuth of the scans

get_elevation - get the elevation of the scans

get_parangle - get the parallactic angle of the scans

get_unit - get the current unit

set_unit - set the abcissa unit to be used from this

point on

get_abcissa - get the abcissa values and name for a given

row (time)

get_column_names - get the names of the columns in the scantable

for use with selector.set_query

set_freqframe - set the frame info for the Spectral Axis

(e.g. ’LSRK’)

set_doppler - set the doppler to be used from this point on

set_dirframe - set the frame for the direction on the sky

set_instrument - set the instrument name

set_feedtype - set the feed type

get_fluxunit - get the brightness flux unit

set_fluxunit - set the brightness flux unit

create_mask - return an mask in the current unit

for the given region. The specified regions

are NOT masked

get_restfreqs - get the current list of rest frequencies

set_restfreqs - set a list of rest frequencies

flag - flag selected channels in the data

35

save - save the scantable to disk as either ’ASAP’,

’SDFITS’ or ’ASCII’

nbeam,nif,nchan,npol - the number of beams/IFs/Pols/Chans

nscan - the number of scans in the scantable

nrow - te number of spectra in the scantable

history - print the history of the scantable

get_fit - get a fit which has been stored witnh the data

average_time - return the (weighted) time average of a scan

or a list of scans

average_pol - average the polarisations together.

average_beam - average the beams together.

convert_pol - convert to a different polarisation type

auto_quotient - return the on/off quotient with

automatic detection of the on/off scans (closest

in time off is selected)

mx_quotient - Form a quotient using MX data (off beams)

scale, *, / - return a scan scaled by a given factor

add, +, - - return a scan with given value added

bin - return a scan with binned channels

resample - return a scan with resampled channels

smooth - return the spectrally smoothed scan

poly_baseline - fit a polynomial baseline to all Beams/IFs/Pols

auto_poly_baseline - automatically fit a polynomial baseline

recalc_azel - recalculate azimuth and elevation based on

the pointing

gain_el - apply gain-elevation correction

opacity - apply opacity correction

convert_flux - convert to and from Jy and Kelvin brightness

units

freq_align - align spectra in frequency frame

invert_phase - Invert the phase of the cross-correlation

swap_linears - Swap XX and YY

rotate_xyphase - rotate XY phase of cross correlation

rotate_linpolphase - rotate the phase of the complex

polarization O=Q+iU correlation

freq_switch - perform frequency switching on the data

stats - Determine the specified statistic, e.g. ’min’

’max’, ’rms’ etc.

stddev - Determine the standard deviation of the current

beam/if/pol

[Selection]

selector - a selection object to set a subset of a scantable

set_cycles - set (a list of) cycles by index

set_beams - set (a list of) beamss by index

set_ifs - set (a list of) ifs by index

set_polarisations - set (a list of) polarisations by name

or by index

36

set_names - set a selection by name (wildcards allowed)

set_tsys - set a selection by tsys thresholds

set_query - set a selection by SQL-like query, e.g. BEAMNO==1

reset - unset all selections

+ - merge to selections

[Math] Mainly functions which operate on more than one scantable

average_time - return the (weighted) time average

of a list of scans

quotient - return the on/off quotient

simple_math - simple mathematical operations on two scantables,

’add’, ’sub’, ’mul’, ’div’

quotient - build quotient of the given on and off scans

(matched pairs and 1 off/n on are valid)

merge - merge a list of scantables

[Line Catalog]

linecatalog - a linecatalog wrapper, taking an ASCII or

internal format table

summary - print a summary of the current selection

set_name - select a subset by name pattern, e.g. ’*OH*’

set_strength_limits - select a subset by line strength limits

set_frequency_limits - select a subset by frequency limits

reset - unset all selections

save - save the current subset to a table (internal

format)

get_row - get the name and frequency from a specific

row in the table

[Fitting]

fitter

auto_fit - return a scan where the function is

applied to all Beams/IFs/Pols.

commit - return a new scan where the fits have been

commited.

fit - execute the actual fitting process

store_fit - store the fit parameters in the data (scantable)

get_chi2 - get the Chi^2

set_scan - set the scantable to be fit

set_function - set the fitting function

set_parameters - set the parameters for the function(s), and

set if they should be held fixed during fitting

set_gauss_parameters - same as above but specialised for individual

gaussian components

get_parameters - get the fitted parameters

plot - plot the resulting fit and/or components and

residual

37

[Plotter]

asapplotter - a plotter for asap, default plotter is

called ’plotter’

plot - plot a scantable

plot_lines - plot a linecatalog overlay

save - save the plot to a file (’png’ ,’ps’ or ’eps’)

set_mode - set the state of the plotter, i.e.

what is to be plotted ’colour stacked’

and what ’panelled’

set_selection - only plot a selected part of the data

set_range - set a ’zoom’ window [xmin,xmax,ymin,ymax]

set_legend - specify user labels for the legend indeces

set_title - specify user labels for the panel indeces

set_abcissa - specify a user label for the abcissa

set_ordinate - specify a user label for the ordinate

set_layout - specify the multi-panel layout (rows,cols)

set_colors - specify a set of colours to use

set_linestyles - specify a set of linestyles to use if only

using one color

set_font - set general font properties, e.g. ’family’

set_histogram - plot in historam style

set_mask - set a plotting mask for a specific polarization

text - draw text annotations either in data or relative

coordinates

arrow - draw arrow annotations either in data or relative

coordinates

axhline,axvline - draw horizontal/vertical lines

axhspan,axvspan - draw horizontal/vertical regions

xyplotter - matplotlib/pylab plotting functions

[Reading files]

reader - access rpfits/sdfits files

arrow - draw arrow annotations either in data or relative

coordinates

axhline,axvline - draw horizontal/vertical lines

axhspan,axvspan - draw horizontal/vertical regions

xyplotter - matplotlib/pylab plotting functions

[Reading files]

reader - access rpfits/sdfits files

open - attach reader to a file

close - detach reader from file

read - read in integrations

summary - list info about all integrations

38

[General]

commands - this command

print - print details about a variable

list_scans - list all scantables created bt the user

list_files - list all files readable by asap (default rpf)

del - delete the given variable from memory

range - create a list of values, e.g.

range(3) = [0,1,2], range(2,5) = [2,3,4]

help - print help for one of the listed functions

execfile - execute an asap script, e.g. execfile(’myscript’)

list_rcparameters - print out a list of possible values to be

put into .asaprc

rc - set rc parameters from within asap

mask_and,mask_or,

mask_not - boolean operations on masks created with

scantable.create_mask

17.2 ASCII output format

17.3 .asaprc settings

verbose True/False Print verbose output, good to disable in scripts

insitu True/False Apply operations on the input scantable or re-
turn new one

useplotter True/False Preload a default plotter

plotter.gui True/False Do we want a GUI or plot to a file

plotter.stacking Pol Beam IF
Scan Time

Default mode for colour stacking

plotter.panelling Pol Beam IF
Scan Time

Default mode for panelling

plotter.ganged True/False Push panels together, to share axislabels

plotter.decimate True/False Decimate the number of points plotted by a
factor of nchan/1024

plotter.histogram True/False Plot spectrum using histogram rather than
lines.

plotter.colours Set default colours for plotting

plotter.colours Set default line styles

plotter.papersze A4

39

scantable.save ASAP SDFITS
FITS ASCII MS2

Default output format when saving

scantable.autoaverage True/False Auto averaging on read

scantable.freqframe LSRK TOPO
BARY etc

default frequency frame to set when function
scantable.set freqframe is called or the data is
imported

scantable.verbosesummary True/False Control the level of information printed by
summary

scantable.storage memory/disk Storage of scantables in memory of via based
disk tables

17.4 Installation

Please refer to the asap wiki for instructions on downloading and/or building asap from
source.

http://www.atnf.csiro.au/computing/software/asap/

40

